Dysregulation of GABAA Receptor-Mediated Neurotransmission during the Auditory Cortex Critical Period in the Fragile X Syndrome Mouse Model

脆性 X 综合征小鼠模型中听觉皮层关键期 GABAA 受体介导的神经传递失调

阅读:4
作者:Yeri J Song, Bo Xing, Aaron J Barbour, Chengwen Zhou, Frances E Jensen

Abstract

Fragile X syndrome (FXS) is the leading monogenic form of intellectual disability and autism, with patients exhibiting numerous auditory-related phenotypes during their developmental period, including communication, language development, and auditory processing deficits. Despite FXS studies describing excitatory-inhibitory (E-I) imbalance in the auditory circuit and an impaired auditory critical period, evaluation of E-I circuitry maturation in the auditory cortex of FXS models remains limited. Here, we examined GABAA receptor (GABAAR)-mediated inhibitory synaptic transmission within the auditory cortex, characterizing normal intracortical circuit development patterns in wild-type (WT) mice and examining their dysregulation in developing Fmr1 knock-out (KO) mice. Electrophysiological recordings revealed gradual developmental shifts in WT L4-L2/3 connectivity, where circuit excitability significantly increased after critical period onset. KO mice exhibited accelerated developmental shifts related to aberrant GABAergic signaling. Specifically, Fmr1 KO L2/3 pyramidal neurons have enhanced developmental sensitivity to pharmacological GABAAR modulators, altered maturation of GABAAR voltage-dependent conductance, with additional presynaptic GABA release alterations. These differences are further accompanied by alterations in developmental long-term potentiation. Together, our results suggest that altered GABAergic signaling within developing Fmr1 KOs impairs the normal patterning of E-I circuit and synaptic plasticity maturation to contribute to the impaired auditory cortex critical period and functional auditory deficits in FXS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。