A novel FGF23 mutation in hyperphosphatemic familial tumoral calcinosis and its deleterious effect on protein O-glycosylation

高磷血症家族性肿瘤性钙化症中的新型 FGF23 突变及其对蛋白质 O-糖基化的有害影响

阅读:6
作者:Qingyao Zuo, Weili Yang, Baoyue Liu, Dong Yan, Zhixin Wang, Hong Wang, Wei Deng, Xi Cao, Jinkui Yang

Background

Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare disease characterized by hyperphosphatemia and ectopic calcification, predominantly at periarticular locations. This study was performed to characterize the clinical profile of tumoral calcinosis and to identify gene mutations associated with HFTC and elucidated its pathogenic role.

Conclusion

We identified a novel FGF23 missense mutation, and confirmed its damaging role in FGF23 protein O-glycosylation. Our findings expand the current spectrum of FGF23 variations that influence phosphorus metabolism.

Methods

The three subjects (two male and one female) were aged 30, 25 and 15 years, respectively. The clinical features, histopathological findings, and outcomes of three subjects with HFTC were retrospectively reviewed. The three subjects were analyzed for FGF23, GALNT3 and KL mutations. Function of mutant gene was analyzed by western blotting and wheat germ agglutinin affinity chromatography.

Results

All subjects had hyperphosphatemia and elevated calcium-phosphorus product. Calcinosis positions included the left shoulder, left index finger, and right hip. Bone and joint damage were present in two cases and multiple foci influenced body growth in one case. The histopathological features were firm, rubbery masses comprising multiple nodules of calcified material bordered by the proliferation of mononuclear or multinuclear macrophages, osteoclastic-like giant cells, fibroblasts, and chronic inflammatory cells. The novel mutation c.484A>G (p.N162D) in exon 3 of FGF23 was identified in one subject and his family members. Measurement of circulating FGF23 in the subject confirmed low intact FGF23 and increased C-terminal fragment. In vitro experiments showed that the mutant FGF23 proteins had defective O-glycosylation and impaired protein proteolysis protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。