Aims
Acetylation of H4 at lysine 16 (H4K16ac) has been well-characterized as an acetylated mark, and the expression of which is closely associated with the tumorigenesis of human cancers. This study aimed to reveal whether KRas mutation drives the initiation and progression of glioma via modulation of H4 acetylation.
Background/aims
Acetylation of H4 at lysine 16 (H4K16ac) has been well-characterized as an acetylated mark, and the expression of which is closely associated with the tumorigenesis of human cancers. This study aimed to reveal whether KRas mutation drives the initiation and progression of glioma via modulation of H4 acetylation.
Conclusion
Our results suggest that activation of KRas-ERK1/2 signaling participates in the onset and progression of glioma at least partially through modulating acetylation of H4 at K16. KRas-ERK1/2 signaling mediates the acetylation of H4K16 via Sirt2 and MDM2-dependnet degeneration of TIP60.
Methods
Changes of H4K16 acetylation in human glioblastoma A172 cells following transfection with a plasmid for expression of mutant KRas were tested by western blot analysis. MTT assay, transwell assay, soft-agar colony formation assay, RT-PCR and chromatin immunoprecipitation were carried out to evaluate the effect of H4K16ac on A172 cells growth and migration. Furthermore, the enzymes participating in the deacetylation of H4K16ac were studied by using RT-PCR and western blot analysis.
Results
H4K16ac was found to be deacetylated by KRas-ERK1/2 activation. H4K16Q (a plasmid for mimicking H4K16ac) repressed A172 cells viability, colony formation, and migratory capacity. Besides, H4K16ac was capable of regulating the transcription of several ERK1/2 pathway downstream genes. KRas-ERK1/2 signaling repressed H4 acetylation at K16 via modulation of a histone deacetylase Sirt2, as well as a histone acetyl-transferase TIP60. Moreover, KRas-ERK1/2 inhibited TIP60 via an MDM2-dependnet fashion.
