Evaluating residual strain throughout the murine female reproductive system

评估整个小鼠雌性生殖系统的残余应变

阅读:6
作者:Daniel J Capone, Gabrielle L Clark, Derek Bivona, Benard O Ogola, Laurephile Desrosiers, Leise R Knoepp, Sarah H Lindsey, Kristin S Miller

Abstract

Mounting evidence suggests that cells within soft tissues seek to maintain a preferred biomechanical state. Residual stress is defined as the stress that remains in a tissue when all external loads are removed and contributes to tissue mechanohomeostasis by decreasing the transmural gradient of wall stress. Current computational models of pelvic floor mechanics, however, often do not consider residual stress. Residual strain, a result of residual stress can be quantitatively measured through opening angle experiments. Therefore, the objective of this study is to quantify the regional variations in opening angles along the murine female reproductive system at estrus and diestrus, to quantify residual strain in the maintenance state of sexually mature females. Further, evidence suggests that hydrophilic glycosaminoglycan/proteoglycans are integral to cervical remodeling. Thus, variations in opening angles following hypo-osmotic loading are evaluated. Opening angle experiments were performed along the murine reproductive system in estrus (n = 8) and diestrus (n = 8) and placed in hypo-osmotic solution. Measurements of thickness and volume were also obtained for each group. Differences (p < 0.05) in opening angle were observed with respect to region and loading, however, differences with respect to estrous stage were not significant. Thickness values were significant (p < 0.05) with respect to region only. The effects of both estrous cycle and region resulted in significant differences (p < 0.05) in observed volume. The observed regional differences indicate variation in the stress-free state among the reproductive system which may have implications for future computational models to advance women's reproductive health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。