Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy

肝素与一氧化氮生成化合物协同改性心血管支架仿生工程内皮样涂层

阅读:8
作者:Hua Qiu, Pengkai Qi, Jingxia Liu, Ying Yang, Xing Tan, Yu Xiao, Manfred F Maitz, Nan Huang, Zhilu Yang

Abstract

Co-immobilization of two or more molecules with different and complementary functions to prevent thrombosis, suppress smooth muscle cell (SMC) proliferation, and support endothelial cell (EC) growth is generally considered to be promising for the re-endothelialization on cardiovascular stents. However, integration of molecules with distinct therapeutic effects does not necessarily result in synergistic physiological functions due to the lack of interactions among them, limiting their practical efficacy. Herein, we apply heparin and nitric oxide (NO), two key molecules of the physiological functions of endothelium, to develop an endothelium-mimetic coating. Such coating is achieved by sequential conjugation of heparin and the NO-generating compound selenocystamine (SeCA) on an amine-bearing film of plasma polymerized allylamine. The resulting surface combines the anti-coagulant (anti-FXa) function provided by the heparin and the anti-platelet activity of the catalytically produced NO. It also endows the stents with the ability to simultaneously up-regulate α-smooth muscle actin (α-SMA) expression and to increase cyclic guanylate monophosphate (cGMP) synthesis of SMC, thereby significantly promoting their contractile phenotype and suppressing their proliferation. Importantly, this endothelium-biomimetic coating creates a favorable microenvironment for EC over SMC. These features impressively improve the antithrombogenicity, re-endothelialization and anti-restenosis of vascular stents in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。