Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells

体外活化的近端肾小管上皮细胞通过 Fractalkine-CX3CR1 依赖性募集和保留人类 CD1c+ 髓系树突状细胞

阅读:12
作者:Andrew J Kassianos, Xiangju Wang, Sandeep Sampangi, Sadia Afrin, Ray Wilkinson, Helen Healy

Abstract

Chemokines play pivotal roles in tissue recruitment and retention of leukocytes, with CX3CR1 recently identified as a chemokine receptor that selectively targets mouse kidney dendritic cells (DCs). We have previously demonstrated increased tubulointerstitial recruitment of human transforming growth factor-β (TGF-β)-producing DCs in renal fibrosis and chronic kidney disease (CKD). However, little is known about the mechanism of human DC recruitment and retention within the renal interstitium. We identified CD1c+ DCs as the predominant source of profibrotic TGF-β and highest expressors of the fractalkine receptor CX3CR1 within the renal DC compartment. Immunohistochemical analysis of diseased human kidney biopsies showed colocalization of CD1c+ DCs with fractalkine-positive proximal tubular epithelial cells (PTECs). Human primary PTEC activation with interferon-γ and tumor necrosis factor-α induced both secreted and surface fractalkine expression. In line with this, we found fractalkine-dependent chemotaxis of CD1c+ DCs to supernatant from activated PTECs. Finally, in comparison with unactivated PTECs, we showed significantly increased adhesion of CD1c+ DCs to activated PTECs via a fractalkine-dependent mechanism. Thus, TGF-β-producing CD1c+ DCs are recruited and retained in the renal tubulointerstitium by PTEC-derived fractalkine. These cells are then positioned to play a role in the development of fibrosis and progression of chronic kidney disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。