Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease

在人类心脏分化和疾病模型系统中鉴定具有宿主基因独立表达的环状 RNA

阅读:9
作者:D Siede, K Rapti, A A Gorska, H A Katus, J Altmüller, J N Boeckel, B Meder, C Maack, M Völkers, O J Müller, J Backs, C Dieterich

Aims

Cardiovascular disease, one of the most common causes of death in western populations, is characterized by changes in RNA splicing and expression. Circular RNAs (circRNA) originate from back-splicing events, which link a downstream 5' splice site to an upstream 3' splice site. Several back-splicing junctions (BSJ) have been described in heart biopsies from human, rat and mouse hearts (Werfel et al., 2016; Jakobi et al., 2016 ). Here, we use human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) to identify circRNA and host gene dynamics in cardiac development and disease. In parallel, we explore candidate interactions of selected homologs in mouse and rat via RIP-seq experiments.

Conclusion

CircRNAs are dynamically expressed in a hiPSC-CM model of cardiac development and stress response. Some circRNAs show similar, host-gene independent expression dynamics in patient samples and may interact with the ribosome and RISC complex. In summary, the hiPSC-CM model uncovered a new signature of potentially disease relevant circRNAs which may serve as novel therapeutic targets.

Results

Deep RNA sequencing of cardiomyocyte development and β-adrenergic stimulation uncovered 4518 circRNAs. The set of circular RNA host genes is enriched for chromatin modifiers and GTPase activity regulators. RNA-seq and qRT-PCR data showed that circular RNA expression is highly dynamic in the hiPSC-CM model with 320 circRNAs showing significant expression changes. Intriguingly, 82 circRNAs are independently regulated to their host genes. We validated the same circRNA dynamics for circRNAs from ATXN10, CHD7, DNAJC6 and SLC8A1 in biopsy material from human dilated cardiomyopathy (DCM) and control patients. Finally, we could show that rodent homologs of circMYOD, circSLC8A1, circATXN7 and circPHF21A interact with either the ribosome or Argonaute2 protein complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。