Single-Cell RNA Sequencing Identifies Candidate Renal Resident Macrophage Gene Expression Signatures across Species

单细胞RNA测序鉴定出不同物种肾脏驻留巨噬细胞的候选基因表达特征

阅读:2
作者:Kurt A Zimmerman ,Melissa R Bentley ,Jeremie M Lever ,Zhang Li ,David K Crossman ,Cheng Jack Song ,Shanrun Liu ,Michael R Crowley ,James F George ,Michal Mrug ,Bradley K Yoder

Abstract

Background: Resident macrophages regulate homeostatic and disease processes in multiple tissues, including the kidney. Despite having well defined markers to identify these cells in mice, technical limitations have prevented identification of a similar cell type across species. The inability to identify resident macrophage populations across species hinders the translation of data obtained from animal model to human patients. Methods: As an entry point to determine novel markers that could identify resident macrophages across species, we performed single-cell RNA sequencing (scRNAseq) analysis of all T and B cell-negative CD45+ innate immune cells in mouse, rat, pig, and human kidney tissue. Results: We identified genes with enriched expression in mouse renal resident macrophages that were also present in candidate resident macrophage populations across species. Using the scRNAseq data, we defined a novel set of possible cell surface markers (Cd74 and Cd81) for these candidate kidney resident macrophages. We confirmed, using parabiosis and flow cytometry, that these proteins are indeed enriched in mouse resident macrophages. Flow cytometry data also indicated the existence of a defined population of innate immune cells in rat and human kidney tissue that coexpress CD74 and CD81, suggesting the presence of renal resident macrophages in multiple species. Conclusions: Based on transcriptional signatures, our data indicate that there is a conserved population of innate immune cells across multiple species that have been defined as resident macrophages in the mouse. Further, we identified potential cell surface markers to allow for future identification and characterization of this candidate resident macrophage population in mouse, rat, and pig translational studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。