Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-Isothermal TGA Data

利用非等温 TGA 数据通过人工神经网络预测高密度聚乙烯的催化裂解

阅读:9
作者:Mohammed Al-Yaari, Ibrahim Dubdub

Abstract

This paper presents a comprehensive kinetic study of the catalytic pyrolysis of high-density polyethylene (HDPE) utilizing thermogravimetric analysis (TGA) data. Nine runs with different catalyst (HZSM-5) to polymer mass ratios (0.5, 0.77, and 1.0) were performed at different heating rates (5, 10, and 15 K/min) under nitrogen over the temperature range 303-973 K. Thermograms showed clearly that there was only one main reaction region for the catalytic cracking of HDPE. In addition, while thermogravimetric analysis (TGA) data were shifted towards higher temperatures as the heating rate increased, they were shifted towards lower temperatures and polymer started to degrade at lower temperatures when the catalyst was used. Furthermore, the activation energy of the catalytic pyrolysis of HDPE was obtained using three isoconversional (model-free) models and two non-isoconversional (model-fitting) models. Moreover, a set of 900 input-output experimental TGA data has been predicted by a highly efficient developed artificial neural network (ANN) model. Results showed a very good agreement between the ANN-predicted and experimental values (R2 > 0.999). Besides, A highly-efficient performance of the developed model has been reported for new input data as well.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。