Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice

橘皮素通过激活小鼠 RORα/γ-E4BP4 轴预防谵妄症引起的认知障碍

阅读:5
作者:Min Chen, Yifei Xiao, Fugui Zhang, Jianhao Du, Li Zhang, Yifang Li, Danyi Lu, Zhigang Wang, Baojian Wu

Abstract

Delirium is a common and serious neuropsychiatric syndrome characterized with acute cognitive and attentional deficits, however, the effective therapies are lacking. Here, using mouse models of delirium, we investigated the effects of tangeretin (TAN, a natural flavonoid) on cognitive impairment by assessing object preference with novel object recognition (NOR) test and spontaneous alternation with Y maze test. We found that TAN, as a RORα/γ agonist, prevented cognitive decline in delirious mice as evidenced by a normal novel object preference and increased spontaneous alternation. This was accompanied by decreased expression of ERK1/2, TNFα and IL-1β as well as diminished microglial activation in delirious mice. The protective effect of TAN on delirium was mainly attributed to increased hippocampal E4BP4 expression (a known target of RORs and a regulator of cognition in delirium through modulating the ERK1/2 cascade and microglial activation) via activation of RORα/γ. In addition, TAN treatment modulated the expression of RORα/γ target genes (such as E4bp4 and Bmal1) and inhibited the expression of TNFα and IL-1β in lipopolysaccharide (LPS)-stimulated cells, supporting a beneficial effect of TAN on delirium. In conclusion, TAN is identified as a RORα/γ agonist which promotes E4BP4 expression to prevent cognitive decline in delirious mice. Our findings may have implications for drug development of TAN for prevention and treatment of various diseases associated with cognitive deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。