Targeting CD133 improves chemotherapeutic efficacy of recurrent pediatric pilocytic astrocytoma following prolonged chemotherapy

靶向 CD133 可提高长期化疗后复发性儿童毛细胞星形细胞瘤的化疗效果

阅读:7
作者:Guifa Xi, Yuping Derek Li, Gordan Grahovac, Veena Rajaram, Nitin Wadhwani, Tatiana Pundy, Barbara Mania-Farnell, Charles David James, Tadanori Tomita

Background

Pilocytic astrocytomas (PAs) are the most common pediatric central nervous system neoplasms. In the majority of cases these tumors are benign and receive favorable prognosis following gross total surgical resection. In patients with progressive or symptomatic tumors, aggressive surgical resection is generally not feasible, thus radiation or chemotherapy are accepted initial or adjuvant interventions. Due to serious long-lasting side-effects, radiation is limited in young children; therefore, chemotherapy is widely practiced as an adjuvant treatment for these patients. However, chemotherapy can promote the emergence of multidrug resistant tumor cells that are more malignant than those of the original tumor. CD133, a putative stem cell marker in normal tissue and malignant brain tumors, enhances multidrug resistant gene 1 (MDR1) expression following chemotherapy in adult malignant glioblastomas. This study examines the relationship between CD133 and MDR1 in pediatric PAs exposed to chemotherapy, with the goal of identifying therapeutic targets that manifest as a result of chemotherapy.

Conclusions

CD133 contributes to multidrug resistance by regulating MDR1 levels via the PI3K-Akt-NF-κB signal pathway not only in adult glioblastomas, but also in pediatric PAs. Targeting CD133, adjuvant to conventional chemotherapy may improve outcomes for children with recurrent PA.

Methods

Slides were obtained for 15 recurrent PAs, seven of which had received chemotherapy prior to surgical treatment for the recurrent tumor. These samples, as well as primary tumor tissue slides from the same patients were used to investigate CD133 and MDR1 expression via immunofluorescence. Archived frozen tissue samples from the same patients were used to examine CD133, MDR1 and PI3K-Akt-NF-κB signaling mediators, via western blot. Two drug resistant pediatric PA cell lines Res186 and Res199 were also used to evaluate the role of CD133 on cell response to cytotoxic therapy.

Results

CD133 and MDR1 were co-expressed and their expression was elevated in recurrent PAs from patients that had received chemotherapy, compared to patients that had not received chemotherapy. PI3K-Akt-NF-κB signaling mediator expression was also elevated in recurrent, chemotherapy-treated PA. Suppressing CD133 expression with siCD133 decreased levels of PI3K-Akt-NF-κB signaling mediators and MDR1, while increasing cell chemosensitivity, as indicated by quantification of apoptotic cells following chemotherapy. Conclusions: CD133 contributes to multidrug resistance by regulating MDR1 levels via the PI3K-Akt-NF-κB signal pathway not only in adult glioblastomas, but also in pediatric PAs. Targeting CD133, adjuvant to conventional chemotherapy may improve outcomes for children with recurrent PA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。