Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells

缺氧 ADSC 衍生的 EV 促进软骨干细胞/祖细胞的增殖和软骨发生分化

阅读:4
作者:Ke Xue, Yongkang Jiang, Xiaodie Zhang, Jun Wu, Lin Qi, Kai Liu

Abstract

Cartilage tissue engineering is a promising option for repairing cartilage defects, although harvesting a large number of seeding cells remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles (EVs) may play a major role in cell-cell and tissue-tissue communication. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived EVs on CSPCs proliferation and differentiation. The characteristics of ADSCs-derived EVs were identified, and proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. SEM, histological staining, biochemical and biomechanical analysis was performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40-1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induce CSPCs to produce significantly more cartilage matrix and proteoglycan. In conclusion, hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。