Regulation of CovR expression in Group B Streptococcus impacts blood-brain barrier penetration

组链球菌中 CovR 表达的调节影响血脑屏障穿透

阅读:8
作者:Annalisa Lembo, Michael A Gurney, Kellie Burnside, Anirban Banerjee, Melissa de los Reyes, James E Connelly, Wan-Jung Lin, Kelsea A Jewell, Anthony Vo, Christian W Renken, Kelly S Doran, Lakshmi Rajagopal

Abstract

Group B Streptococcus (GBS) is an important cause of invasive infections in humans. The pathogen encodes a number of virulence factors including the pluripotent beta-haemolysin/cytolysin (beta-H/C). As GBS has the disposition of both a commensal organism and an invasive pathogen, it is important for the organism to appropriately regulate beta-H/C and other virulence factors in response to the environment. GBS can repress transcription of beta-H/C using the two-component system, CovR/CovS. Recently, we described that the serine/threonine kinase Stk1 can phosphorylate CovR at threonine 65 to relieve repression of beta-H/C. In this study, we show that infection with CovR-deficient GBS strains resulted in increased sepsis. Although CovR-deficient GBS showed decreased ability to invade the brain endothelium in vitro, they were more proficient in induction of permeability and pro-inflammatory signalling pathways in brain endothelium and penetration of the blood-brain barrier (BBB) in vivo. Microarray analysis revealed that CovR positively regulates its own expression and regulates the expression of 153 genes. Collectively, our results suggest that the positive feedback loop which regulates CovR transcription modulates host cell interaction and immune defence and may facilitate the transition of GBS from a commensal organism to a virulent meningeal pathogen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。