A phenotypic screen identifies microtubule plus end assembly regulators that can function in mitotic spindle orientation

表型筛选可识别在有丝分裂纺锤体定向中发挥作用的微管末端组装调节剂

阅读:6
作者:Ailine Stolz, Norman Ertych, Holger Bastians

Abstract

Proper regulation of microtubule dynamics during mitosis is essential for faithful chromosome segregation. In fact, recently we discovered increased microtubule plus end assembly rates that are frequently observed in human cancer cells as an important mechanism leading to whole chromosome missegregation and chromosomal instability (CIN). However, the genetic alterations responsible for increased microtubule polymerization rates in cancer cells remain largely unknown. The identification of such lesions is hampered by the fact that determining dynamic parameters of microtubules usually involves analyses of living cells, which is technically difficult to perform in large-scale screening settings. Therefore, we sought to identify alternative options to systematically identify regulators of microtubule plus end polymerization. Here, we introduce a simple and robust phenotypic screening assay that is based on the analyses of monopolar mitotic spindle structures that are induced upon inhibition of the mitotic kinesin Eg5/KIF11. We show that increased microtubule polymerization causes highly asymmetric monoasters in the presence of Eg5/KIF11 inhibition and this phenotype can be reliably assessed in living as well as in fixed cells. Using this assay we performed a siRNA screen, in which we identify several microtubule plus end binding proteins as well as centrosomal and cortex associated proteins as important regulators of microtubule plus end assembly. Interestingly, we demonstrate that a subgroup of these regulators function in the regulation of spindle orientation through their role in dampening microtubule plus end polymerization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。