Dry Period Heat Stress Impacts Mammary Protein Metabolism in the Subsequent Lactation

干奶期热应激会影响后续哺乳期乳腺蛋白质代谢

阅读:7
作者:Bethany Dado-Senn, Amy L Skibiel, Geoffrey E Dahl, Sebastian I Arriola Apelo, Jimena Laporta

Abstract

Dry period heat stress impairs subsequent milk production, but its impact on milk protein content and yield is inconsistent. We hypothesize that dairy cow exposure to dry period heat stress will reduce milk protein synthesis in the next lactation, potentially through modified amino acid (AA) transport and compromised mTOR signaling in the mammary gland. Cows were enrolled into heat-stressed (dry-HT, n = 12) or cooled (dry-CL, n = 12) treatments for a 46-day dry period then cooled after calving. Milk yield and composition and dry matter intake were recorded, and milk, blood, and mammary tissue samples were collected at 14, 42, and 84 days in milk (DIM) to determine free AA concentrations, milk protein fractions, and mammary AA transporter and mTOR pathway gene and protein expression. Dry matter intake did not significantly differ between treatments pre- or postpartum. Compared with dry-CL cows, milk yield was decreased (32.3 vs. 37.7 ± 1.6 kg/day) and milk protein yield and content were reduced in dry-HT cows by 0.18 kg/day and 0.1%. Further, dry-HT cows had higher plasma concentrations of glutamic acid, phenylalanine, and taurine. Gene expression of key AA transporters was upregulated at 14 and 42 DIM in dry-HT cows. Despite minor changes in mTOR pathway gene expression, the protein 4E-BP1 was upregulated in dry-HT cows at 42 DIM whereas Akt and p70 S6K1 were downregulated. These results indicate major mammary metabolic adaptations during lactation after prior exposure to dry period heat stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。