Synthesis of high surface area mesoporous ZnCl2-activated cocoa (Theobroma cacao L) leaves biochar derived via pyrolysis for crystal violet dye removal

合成高表面积介孔 ZnCl2 活化可可 (Theobroma cacao L) 叶生物炭,通过热解获得,用于去除结晶紫染料

阅读:5
作者:Jamiu Mosebolatan Jabar, Matthew Ayorinde Adebayo, Ignatius Adekunle Owokotomo, Yisau Adelaja Odusote, Murat Yılmaz

Abstract

Chemically activated cocoa leaves biochar (CLB) was successfully prepared from fallen cocoa leaves (CLs) via ZnCl2-activation and pyrolysis at 700 °C for sequestration of toxic crystal violet (CV) dye from aqueous solution. CLs and CLB were characterized using elemental analysis (CHN/O), Brunauer-Emmett-Teller method (BET), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The optimum conditions for effective removal of CV dye from aqueous solution (75.67% for CLs and 99.87% for CLB) were pH 9, initial CV dye concentration 100 mg/L, adsorbent (CLs/CLB) dose 0.4 g/L, contact time 160 min and temperature 300 K. Modified Ritchie second order best described kinetic and Liu model described equilibrium adsorption. CLs and CLB with maximum adsorption capacities 190.70 and 253.3 mg/g respectively, compete favorably with adsorbents used for removal of CV dye from wastewater in the literature. The high BET surface area (957.02 m2/g) and mean pore diameter (7.21 nm) were indicators of better adsorption efficiency of CLB. CLs showed adsorption to proceed towards endothermic process, while it was exothermic process for CLB. This study established the suitability of cocoa leaves as sustainable and environmental friendly precursor for preparation of adsorbent for the treatment of dye-containing wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。