Transcriptome profiling reveals that the SM22α-regulated molecular pathways contribute to vascular pathology

转录组分析显示 SM22α 调控的分子通路导致血管病理

阅读:6
作者:Rong Chen, Fan Zhang, Li Song, Yanan Shu, Yanling Lin, Lihua Dong, Xi Nie, Dandan Zhang, Peng Chen, Mei Han

Abstract

Smooth muscle cell marker, SM22α, was down-regulated in the pathogenesis of arterial diseases including atherosclerosis, restenosis and abdominal aortic aneurysms. However, the question still exists whether this down-regulation actively contributes to the pathogenesis of vascular diseases. In an ongoing effort to understand the role of SM22α, here we explored transcriptome profiling by RNA-Seq from arteries of SM22α(-/-) and SM22α(+/+) mice. Analysis revealed that the most enriched pathways caused by SM22α-knockout were hematopoiesis, inflammation and lipid metabolism, respectively, and NF-κB, RXRα and PPARα were the major upstream regulators. The candidate genes involved in inflammation and lipid metabolism were clustered in atherosclerosis. Thus we suspected that the molecular basis in SM22α(-/-) mice was already prepared for the initiation of atherosclerosis. Further analysis suggested the up-regulated TNF caused NF-κB pathway activation. Our results showed loss of SM22α exacerbated TNF-α-mediated NF-κB activation and increased the expression levels of ApoCI in vitro, while overexpression of SM22α suppressed TNF-α-mediated NF-κB activation. In addition, disruption of SM22α enhanced injury-induced neointimal hyperplasia, and increased expression levels of molecules related with cellular adhesion and extracellular matrix degradation. Taken together, these findings not only suggested down-regulation of SM22α can actively contribute to the pathogenesis of atherosclerosis from the molecular basis, but also further confirmed that the vascular cells of SM22α(-/-) mice may become more sensitive to extracellular stimulation, increasing its tendency to develop vascular diseases. Meanwhile, rescuing SM22α expression may provide a novel therapeutic strategy for arterial diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。