High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice

高脂饮食引起的肥胖会加剧雌激素缺乏对骨骼的有害影响:来自卵巢切除小鼠的证据

阅读:4
作者:Dalia Ali, Florence Figeac, Atenisa Caci, Nicholas Ditzel, Clarissa Schmal, Greet Kerckhofs, Jesper Havelund, Nils Faergeman, Alexander Rauch, Michaela Tencerova, Moustapha Kassem

Abstract

Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。