Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke

脑 ATP 结合盒转运体 A-1 缺乏加剧中风后血脑屏障和白质损伤

阅读:4
作者:Xu Cui, Michael Chopp, Alex Zacharek, Joanna M Karasinska, Yisheng Cui, Ruizhuo Ning, Yi Zhang, Yun Wang, Jieli Chen

Background and purpose

The ATP-binding cassette transporter A-1 (ABCA1) gene is a key target of the transcription factors liver X receptors. Liver X receptor activation has anti-inflammatory and neuroprotective effects in animal ischemic stroke models. Here, we tested the hypothesis that brain ABCA1 reduces blood-brain barrier (BBB) and white matter (WM) impairment in the ischemic brain after stroke.

Conclusions

We demonstrate that brain ABCA1 deficiency increases BBB leakage, WM/axonal damage, and functional deficits after stroke. Concomitant reduction of insulin-like growth factor 1 and upregulation of matrix metalloproteinase-9 may contribute to brain ABCA1 deficiency-induced BBB and WM/axonal damage in the ischemic brain.

Methods

Adult brain-specific ABCA1-deficient (ABCA1(-B/-B)) and floxed-control (ABCA1(fl/fl)) mice were subjected to permanent distal middle cerebral artery occlusion and were euthanized 7 days after distal middle cerebral artery occlusion. Functional outcome, infarct volume, BBB leakage, and WM damage were analyzed.

Purpose

The ATP-binding cassette transporter A-1 (ABCA1) gene is a key target of the transcription factors liver X receptors. Liver X receptor activation has anti-inflammatory and neuroprotective effects in animal ischemic stroke models. Here, we tested the hypothesis that brain ABCA1 reduces blood-brain barrier (BBB) and white matter (WM) impairment in the ischemic brain after stroke.

Results

Compared with ABCA1(fl/fl) mice, ABCA1(-B/-B) mice showed marginally (P=0.052) increased lesion volume but significantly increased BBB leakage and WM damage in the ischemic brain and more severe neurological deficits. Brain ABCA1-deficient mice exhibited increased the level of matrix metalloproteinase-9 and reduced the level of insulin-like growth factor 1 in the ischemic brain. BBB leakage was inversely correlated (r=-0.073; P<0.05) with aquaporin-4 expression. Reduction of insulin-like growth factor 1 and aquaporin-4, but upregulation of matrix metalloproteinase-9 expression were also found in the primary astrocyte cultures derived from ABCA1(-B/-B) mice. Cultured primary cortical neurons derived from C57BL/6 wild-type mice with ABCA1(-B/-B) astrocyte-conditioned medium exhibited decreased neurite outgrowth compared with culture with ABCA1(fl/fl) astrocyte-conditioned medium. ABCA1(-B/-B) primary cortical neurons show significantly decreased neurite outgrowth, which was attenuated by insulin-like growth factor 1 treatment. Conclusions: We demonstrate that brain ABCA1 deficiency increases BBB leakage, WM/axonal damage, and functional deficits after stroke. Concomitant reduction of insulin-like growth factor 1 and upregulation of matrix metalloproteinase-9 may contribute to brain ABCA1 deficiency-induced BBB and WM/axonal damage in the ischemic brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。