Metformin prevents hypoxia-induced podocyte injury by regulating the ZEB2/TG2 axis

二甲双胍通过调节 ZEB2/TG2 轴预防缺氧引起的足细胞损伤

阅读:5
作者:Lakshmi P Kolligundla, Rajesh Kavvuri, Ashish K Singh, Dhanunjay Mukhi, Anil K Pasupulati

Aim

Podocytes, a vital component of the glomerular filtration barrier, are vulnerable to various noxious stimuli, including Hypoxic. HIF1α that transduces hypoxic adaptations induces Transglutaminase 2 (TG2), which catalyses cross-linking of extracellular matrix proteins. In this study, we investigated the mechanism of regulation of TG2 by HIF1α.

Conclusion

This study demonstrates that HIF1α stimulates both TG2 expression and activity via ZEB2/TRPC6 axis, whereas abrogation of HIF1α by metformin prevented hypoxia-induced glomerular injury. Metformin could be explored to treat proteinuric diseases such as CKD, sleep apnea and renal Ischemia-reperfusion-injury, where hypoxia is considered a risk factor.

Methods

HIF1α was induced in podocytes by treating with FG4592 (Roxadustat) or hypoxia (1% oxygen) and in mice by treating with FG4592. Gene expression and protein analysis of ZEB2, TRPC6 and TG2 were performed in both experimental models. Histological and kidney function analyses were performed in mice.

Results

Data mining revealed co-expression of HIF1α, ZEB2, TRPC6 and TG2 in the chronic kidney diseases (CKD)-validated dataset. We observed elevated expression of ZEB2, TRPC6 and TG2 in FG4592-treated podocytes. Ectopic expression of ZEB2 resulted in high TRPC6 expression, elevated intracellular calcium levels and increased TG2 activity. Blocking the TRPC6 channel or inhibiting its expression partially attenuated FG4592-induced TG2 activity, whereas suppression of ZEB2 expression significantly abolished TG2 activity. Furthermore, we noticed the induction of the ZEB2/TRPC6/TG2 axis in podocytes in mice administered with FG-4592. Metformin ameliorated the HIF1α-induced podocyte injury and proteinuria in mice administered with FG-4592.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。