Conclusion
The findings of this study indicate that SHK may be a promising drug for the treatment of FLT3-ITD mutated AML.
Methods
The CCK-8 assay was used to analyze cell viability, and flow cytometry was used to detect cell apoptosis and differentiation. Western blotting and real-time polymerase chain reaction were used to examine the expression of certain proteins and genes. Leukemia mouse model was created to evaluate the antileukemia effect of SHK against FLT3-ITD mutated leukemia in vivo.
Results
After screening a series of leukemia cell lines, those with FLT3-ITD mutations were found to be more sensitive to SHK in terms of proliferation inhibition and apoptosis induction than those without FLT3-ITD mutation. SHK suppresses the expression and phosphorylation of FLT3 receptors and their downstream molecules. Inhibition of the NF-κB/miR-155 pathway is an important mechanism through which SHK kills FLT3-AML cells. Moreover, a low concentration of SHK promotes the differentiation of AML cells with FLT3-ITD mutations. Finally, SHK could significantly inhibit the growth of MV4-11 cells in leukemia bearing mice.
