Catalpol rescues LPS-induced cognitive impairment via inhibition of NF-Κb-regulated neuroinflammation and up-regulation of TrkB-mediated BDNF secretion in mice

梓醇通过抑制 NF-κb 调节的神经炎症和上调 TrkB 介导的 BDNF 分泌来挽救小鼠 LPS 诱导的认知障碍

阅读:5
作者:Weiqing Hu, Li Zou, Ningxi Yu, Zhizhongbin Wu, Wei Yang, Tianyue Wu, Yulin Liu, Yu Pu, Yunbing Jiang, Jifeng Zhang, Huifeng Zhu, Fang Cheng, Shan Feng

Aim

To address the benefits of catalpol on post-sepsis cognitive deterioration and related mechanisms. Materials and

Conclusion

Catalpol alleviates LPS-triggered post-sepsis cognitive impairment by reversing neuroinflammation via blocking the NF-κB pathway, up-regulating neurotrophic factors via the activation of TrkB pathway, and preserving BBB integrity.

Methods

Novel object recognition test, temporal order task, histopathology, and immunochemistry were applied to address the benefits of catalpol on LPS-triggered post-sepsis cognitive decline in mice. Xuebijing injection (10 ml/kg) has been utilized as a positive control in the above animal studies. After treatment, the catalpol content in the hippocampus was determined using LC-MS/MS. Finally, the mechanisms of catalpol were further assessed in BV2 and PC12 cells in vitro using Western blot, RT-PCR, flow cytometry, molecular docking tests, thermal shift assay, transmission electron microscopy, and immunofluorescence analysis.

Results

Behavior tests showed that catalpol therapy could lessen the cognitive impairment induced by LPS damage. HE, Nissl, immunofluorescence, transmission electron microscopy, and Golgi staining further reflected that catalpol treatment could restore lymphocyte infiltration, blood-brain barrier (BBB) degradation, and the decreasing complexity of dendritic trees. According to LC-MS/MS analysis, catalpol had a 136 ng/mg concentration in the hippocampus. In vitro investigation showed that catalpol could inhibit microglia M1 polarization via blocking NF-κB phosphorylation, translocation and then reducing inflammatory cytokine release in BV2 microglia cells. Brain-derived neurotrophic factor (BDNF) release up-regulation and TrkB pathway activation were observed in the catalpol treatment group in vivo and in vitro. The effect of catalpol on enhancing BDNF expression was inhibited by the specific inhibitor of TrkB (GNF-5837) in PC12 cells. Further molecular docking tests showed that catalpol formed weak hydrophobic bonds with TrkB. Besides, thermal shift assay also reflected that catalpol incubation caused a considerable change in the melting temperature of the TrkB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。