Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes

稀土元素醇脱氢酶广泛存在于全球分布、数量丰富且对环境重要的微生物中

阅读:7
作者:Jing Huang #, Zheng Yu #, Joseph Groom, Jan-Fang Cheng, Angela Tarver, Yasuo Yoshikuni, Ludmila Chistoserdova

Abstract

Lanthanides (Ln3+), known as rare earth elements, have recently emerged as enzyme cofactors, contrary to prior assumption of their biological inertia. Several bacterial alcohol dehydrogenases have been characterized so far that depend on Ln3+ for activity and expression, belonging to the methanol dehydrogenase clade XoxF and the ethanol dehydrogenase clade ExaF/PedH. Here we compile an inventory of genes potentially encoding Ln3+-dependent enzymes, closely related to the previously characterized XoxF and ExaF/PedH enzymes. We demonstrate their wide distribution among some of the most numerically abundant and environmentally important taxa, such as the phylogenetically disparate rhizobial species and metabolically versatile bacteria inhabiting world's oceans, suggesting that reliance on Ln3+-mediated biochemistry is much more widespread in the microbial world than previously assumed. Through protein expression and analysis, we here more than double the extant collection of the biochemically characterized Ln3+-dependent enzymes, demonstrating a range of catalytic properties and substrate and cofactor specificities. Many of these enzymes reveal propensity for oxidation of methanol. This observation, in combination with genome-based reconstruction of methylotrophy pathways for select species suggests a much wider occurrence of this metabolic capability among bacterial species, and thus further suggests the importance of methylated compounds as parts of the global carbon cycling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。