Biophysical and structural characterizations of the effects of mutations on the structure-activity relationships of SARS-CoV-2 spike protein

突变对 SARS-CoV-2 刺突蛋白构效关系影响的生物物理和结构表征

阅读:7
作者:Pei-Yu Yu, Tzu-Jing Yang, Shang-Te Danny Hsu

Abstract

Mutations on the spike (S) protein of SARS-CoV-2 could induce structural changes that help increase viral transmissibility and enhance resistance to antibody neutralization. Here, we report a robust workflow to prepare recombinant S protein variants and its host receptor angiotensin-convert enzyme 2 (ACE2) by using a mammalian cell expression system. The functional states of the S protein variants are investigated by cryo-electron microscopy (cryo-EM) and negative staining electron microscopy (NSEM) to visualize their molecular structures in response to mutations, receptor binding, antibody binding, and environmental changes. The folding stabilities of the S protein variants can be deduced from morphological changes based on NSEM imaging analysis. Differential scanning calorimetry provides thermodynamic information to complement NSEM. Impacts of the mutations on host receptor binding and antibody neutralization are in vitro by kinetic binding analyses in addition to atomic insights gleaned from cryo-electron microscopy (cryo-EM). This experimental strategy is generally applicable to studying the molecular basis of host-pathogen interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。