Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice

EGFR 配体和 TNFR1 的细胞外结构域脱落决定了小鼠暴发性肝炎期间肝细胞凋亡

阅读:5
作者:Aditya Murthy, Virginie Defamie, David S Smookler, Marco A Di Grappa, Keisuke Horiuchi, Massimo Federici, Maria Sibilia, Carl P Blobel, Rama Khokha

Abstract

The cell death receptor Fas plays a role in the establishment of fulminant hepatitis, a major cause of drug-induced liver failure. Fas activation elicits extrinsic apoptotic and hepatoprotective signals; however, the mechanisms by which these signals are integrated during disease are unknown. Tissue inhibitor of metalloproteinases 3 (TIMP3) controls the critical sheddase a disintegrin and metalloproteinase 17 (ADAM17) and may dictate stress signaling. Using mice and cells lacking TIMP3, ADAM17, and ADAM17-regulated cell surface molecules, we have found that ADAM17-mediated ectodomain shedding of TNF receptors and EGF family ligands controls activation of multiple signaling cascades in Fas-induced hepatitis. We demonstrated that TNF signaling promoted hepatotoxicity, while excessive TNF receptor 1 (TNFR1) shedding in Timp3-/- mice was protective. Compound Timp3-/-Tnf-/- and Timp3-/-Tnfr1-/- knockout conferred complete resistance to Fas-induced toxicity. Loss of Timp3 enhanced metalloproteinase-dependent EGFR signaling due to increased release of the EGFR ligands TGF-alpha, amphiregulin, and HB-EGF, while depletion of shed amphiregulin resensitized Timp3-/- hepatocytes to apoptosis. Finally, adenoviral delivery of Adam17 prevented acetaminophen-induced liver failure in a clinically relevant model of Fas-dependent fulminant hepatitis. These findings demonstrate that TIMP3 and ADAM17 cooperatively dictate cytokine signaling during death receptor activation and indicate that regulated metalloproteinase activity integrates survival and death signals during acute hepatotoxic stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。