Cryptochrome 1 Regulates Osteoblast Differentiation via the AKT Kinase and Extracellular Signal-Regulated Kinase Signaling Pathways

隐花色素 1 通过 AKT 激酶和细胞外信号调节激酶信号通路调节成骨细胞分化

阅读:8
作者:Lei Zhou, Jun He, Shiwei Sun, Yueming Yu, Tieqi Zhang, Minghai Wang

Abstract

The many circadian clock genes build up a network structure that controls physiological processes, such as the sleep cycle, metabolism, and hormone secretion. Cryptochrome 1 (CRY1), as one of the critical circadian proteins, is closely related to bone formation. However, the regulatory function of CRY1 in osteogenic differentiation remains unclear. In this study, we investigated the role of CRY1 in regulating proliferation and osteoblast differentiation in C3H10 and C2C12 cells after silencing Cry1 using short hairpin RNA interference. In vitro experiments confirmed that the expression level of CRY1 gradually increased during the osteogenic differentiation process, and Cry1 knockdown inhibited the proliferation and differentiation of osteoblastic cells. In addition, Cry1 knockdown inhibited the phosphorylation of AKT kinase (AKT) and extracellular signal-regulated kinase (ERK), which suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK)-ERK signaling pathways. Taken together, these findings show that CRY1 regulates the proliferation and differentiation of osteoblastic cells in an AKT and ERK-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。