Commensal bacterial modulation of the host immune response to ameliorate pain in a murine model of chronic prostatitis

共生细菌通过调节宿主免疫反应来缓解慢性前列腺炎小鼠模型中的疼痛

阅读:1
作者:Stephen F Murphy ,Anthony J Schaeffer, Joseph D Done, Marsha L Quick, Utkucan Acar, Praveen Thumbikat

Abstract

The human commensal microflora plays an essential role in modulating the immune response to control homeostasis. Staphylococcus epidermidis, a commensal bacterium most commonly associated with the skin exerts such effects locally, modulating local immune responses during inflammation and preventing superinfection by pathogens such as Staphylococcus aureus. Although the prostate is considered by many to be sterile, multiple investigations have shown that small numbers of gram-positive bacterial species such as S. epidermidis can be isolated from the expressed prostatic secretions of both healthy and diseased men. Chronic pelvic pain syndrome is a complex syndrome with symptoms including pain and lower urinary tract dysfunction. It has an unknown etiology and limited effective treatments but is associated with modulation of prostate immune responses. Chronic pelvic pain syndrome can be modeled using murine experimental prostatitis (EAP), where CD4+ve IL17A+ve T cells have been shown to play a critical role in disease orchestration and development of pelvic tactile allodynia. Here, we report that intraurethral instillation of a specific S. epidermidis strain (designated NPI [non-pain inducing]), isolated from the expressed prostatic secretion of a healthy human male, into EAP-treated mice reduced the pelvic tactile allodynia responses and increased CD4+ve IL17A+ve T-cell numbers associated with EAP. Furthermore, a cell wall constituent of NPI, lipoteichoic acid, specifically recapitulates these effects and mediates increased expression of CTLA4-like ligands PDL1 and PDL2 on prostatic CD11b+ve antigen-presenting cells. These results identify a new potential therapeutic role for commensal S. epidermidis NPI lipoteichoic acid in the treatment of prostatitis-associated pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。