CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells

CFTR 与 Hsp90 相互作用并调节结直肠癌细胞中的 AKT 和 ERK1/2 磷酸化

阅读:6
作者:Kaisheng Liu, Hongtao Jin, Yaomin Guo, Ying Liu, Yong Wan, Pan Zhao, Zhifan Zhou, Jianhong Wang, Maolin Wang, Chang Zou, Weiqing Wu, Zhiqiang Cheng, Yong Dai

Abstract

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF cells and tissues exhibit various mitochondrial abnormalities. However, the underlying molecular mechanisms remain elusive. Here, we examined the mechanisms through which CFTR regulates Bcl-2 family proteins, which in turn regulate permeabilization of the mitochondrial outer membrane. Notably, inhibition of CFTR activated Bax and Bad, but inhibited Bcl-2. Moreover, degradation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT increased significantly in CFTR-knockdown cells. Dysfunction of CFTR decreased heat-shock protein 90 (Hsp90) mRNA levels, and CFTR was found to interact with Hsp90. Inhibition of Hsp90 by SNX-2112 induced the degradation of phosphorylated AKT and ERK1/2 in Caco2 and HRT18 cells. These findings may help provide insights into the physiological role of CFTR in CF-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。