Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts

氧化应激诱导的骨骼肌成肌细胞线粒体碎裂和运动

阅读:6
作者:Sobia Iqbal, David A Hood

Abstract

Mitochondria are dynamic organelles, capable of altering their morphology and function. However, the mechanisms governing these changes have not been fully elucidated, particularly in muscle cells. We demonstrated that oxidative stress with H2O2 resulted in a 41% increase in fragmentation of the mitochondrial reticulum in myoblasts within 3 h of exposure, an effect that was preceded by a reduction in membrane potential. Using live cell imaging, we monitored mitochondrial motility and found that oxidative stress resulted in a 30% reduction in the average velocity of mitochondria. This was accompanied by parallel reductions in both organelle fission and fusion. The attenuation in mitochondrial movement was abolished by the addition of N-acetylcysteine. To investigate whether H2O2-induced fragmentation was mediated by dynamin-related protein 1, we incubated cells with mDivi1, an inhibitor of dynamin-related protein 1 translocation to mitochondria. mDivi1 attenuated oxidative stress-induced mitochondrial fragmentation by 27%. Moreover, we demonstrated that exposure to H2O2 upregulated endoplasmic reticulum-unfolded protein response markers before the initiation of mitophagy signaling and the mitochondrial-unfolded protein response. These findings indicate that oxidative stress is a vital signaling mechanism in the regulation of mitochondrial morphology and motility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。