A novel mechanism involving coordinated regulation of nuclear levels and acetylation of NF-YA and Bcl6 activates RGS4 transcription

一种涉及核水平和 NF-YA 和 Bcl6 乙酰化的协调调节的新机制激活了 RGS4 转录

阅读:5
作者:Jianqi Yang, Jie Huang, Tapan K Chatterjee, Erik Twait, Rory A Fisher

Abstract

Neuronally enriched RGS4 plays a critical role attenuating G protein signaling in brain, although the mechanisms regulating RGS4 expression are unknown. Here we describe a novel mechanism for transcriptional activation of RGS4 in neuron-like PC6 cells, where RGS4 is markedly induced during confluence-induced growth arrest. Transcriptional activation of RGS4 in confluent PC6 cells was accompanied by impaired G(i/o)-dependent MAPK activation. In the human RGS4 gene promoter, we identified three phylogenetically conserved cis-elements: an inverted CCAAT box element (ICE), a cAMP response element, and a B-cell lymphoma 6 (Bcl6)-binding site. The ICE and the cAMP response element mediate activation, and the Bcl6 site mediates repression of RGS4 transcription. Activation of RGS4 transcription in confluent PC6 cells is accompanied by increases in NF-YA and C/EBPβ and decreases in Bcl6 levels in the nucleus. Increases in NF-YA and C/EBPβ lead to their increased binding to the RGS4 promoter in vivo, and dominant negative forms of these proteins repressed RGS4 promoter activity. Acetylation of NF-YA and Bcl6 were increased in postconfluent cells. Trichostatin A stimulation of RGS4 promoter activity, accompanied by increased binding of NF-YA and decreased binding of Bcl6 to the promoter, was abolished by mutation of the ICE and enhanced by mutation of the Bcl6 site. These findings demonstrate a dynamic and coordinated regulation of nuclear levels and acetylation status of trans-acting factors critical in determining the off/on state of the RGS4 promoter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。