Atlas of clinically distinct cell states and ecosystems across human solid tumors

人类实体肿瘤临床上不同的细胞状态和生态系统图谱

阅读:5
作者:Bogdan A Luca, Chloé B Steen, Magdalena Matusiak, Armon Azizi, Sushama Varma, Chunfang Zhu, Joanna Przybyl, Almudena Espín-Pérez, Maximilian Diehn, Ash A Alizadeh, Matt van de Rijn, Andrew J Gentles, Aaron M Newman

Abstract

Determining how cells vary with their local signaling environment and organize into distinct cellular communities is critical for understanding processes as diverse as development, aging, and cancer. Here we introduce EcoTyper, a machine learning framework for large-scale identification and validation of cell states and multicellular communities from bulk, single-cell, and spatially resolved gene expression data. When applied to 12 major cell lineages across 16 types of human carcinoma, EcoTyper identified 69 transcriptionally defined cell states. Most states were specific to neoplastic tissue, ubiquitous across tumor types, and significantly prognostic. By analyzing cell-state co-occurrence patterns, we discovered ten clinically distinct multicellular communities with unexpectedly strong conservation, including three with myeloid and stromal elements linked to adverse survival, one enriched in normal tissue, and two associated with early cancer development. This study elucidates fundamental units of cellular organization in human carcinoma and provides a framework for large-scale profiling of cellular ecosystems in any tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。