Nuclear estrogen receptor activation by insulin-like growth factor-1 in Neuro-2A neuroblastoma cells requires endogenous estrogen synthesis and is mediated by mutually repressive MAPK and PI3K cascades

Neuro-2A 神经母细胞瘤细胞中胰岛素样生长因子-1 激活核雌激素受体需要内源性雌激素合成,并由相互抑制的 MAPK 和 PI3K 级联介导

阅读:5
作者:Kevin J Pollard, Jill M Daniel

Abstract

Non-canonical mechanisms of estrogen receptor activation may continue to support women's cognitive health long after cessation of ovarian function. These mechanisms of estrogen receptor activation may include ligand-dependent actions via locally synthesized neuroestrogens and ligand-independent actions via growth factor-dependent activation of intracellular kinase cascades. We tested the hypothesis that ligand-dependent and ligand-independent mechanisms interact to activate nuclear estrogen receptors in the Neuro-2A neuroblastoma cell line in the absence of exogenous estrogens. Transcriptional output of estrogen receptors was measured following treatment with insulin-like growth factor-1 (IGF-1) in the presence of specific inhibitors for mitogen-activated protein kinase (MAPK), phosphoinositde-3 kinase (PI3K), and neuroestrogen synthesis. Results indicate that IGF-1-dependent activation of nuclear estrogen receptors is mediated by MAPK, is opposed PI3K, and requires concomitant endogenous neuroestrogen synthesis. We conclude that both cellular signaling context and endogenous ligand availability are important modulators of ligand-independent nuclear estrogen receptor activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。