First Observation of an Acetate Switch in a Methanogenic Autotroph (Methanococcus maripaludis S2)

首次观察到产甲烷自养菌 (Methanococcus maripaludis S2) 中的乙酸盐转换

阅读:7
作者:Chi Hung Vo, Nishu Goyal, Iftekhar A Karimi, Markus Kraft

Abstract

The transition from acetate production by a microorganism in its early growth phase to acetate re-uptake in its late growth phase has been termed acetate switch. It has been observed in several heterotrophic prokaryotes, but not in an autotroph. Furthermore, all reports hitherto have involved the tricarboxylic acid cycle. This study reports the first observation of acetate switch in a methanogenic autotroph Methanococcus maripaludis S2, which uses the Wolfe cycle for its anaerobic respiration. When grown in minimal medium with carbon dioxide as the sole carbon source, and either ammonium or dinitrogen as the sole nitrogen source, M. maripaludis S2 dissimilated acetate in the early growth phase and assimilated it back in the late growth phase. The acetate switch was more pronounced in the dinitrogen-grown cultures. We postulate that the acetate dissimilation in M. maripaludis S2 may serve as a metabolic outlet for the carbon overflow in the early growth phase, and the assimilation in the late growth phase may be due to the scarcity of the carbon source. Based on the primary and secondary protein structures, we propose that MMP0253 may function as the adenosine diphosphate (ADP)-forming acetyl-CoA synthetase to catalyse acetate formation from acetyl-CoA. To verify this, we produced MMP0253 via the ligation-independent cloning technique in Escherichia coli strain Rosetta (DE3) using pNIC28-Bsa4 as the vector. The recombinant protein showed catalytic activity, when added into a mixture of acetyl-CoA, ADP, and inorganic phosphate (Pi). The concentration profile of acetate, together with the enzymatic activity of MMP0253, shows that M. maripaludis S2 can produce acetate and exhibit an acetate switch.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。