Discussion
In general, scutellarein might exert therapeutic effects on pulmonary fibrosis by altering the differentiation, proliferation, and apoptosis of fibroblasts. Although scutellarein has been demonstrated to be safe in mice, further studies are required to investigate the efficacy of scutellarein in patients with IPF.
Methods
This study was conducted using a well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM). The antifibrotic effects of scutellarein on histopathologic manifestations and fibrotic marker expression levels were examined. The effects of scutellarein on fibroblast differentiation, proliferation, and apoptosis and on related signaling pathways were next investigated to demonstrate the underlying mechanisms.
Results
In the present study, we found that scutellarein alleviated BLM-induced pulmonary fibrosis, as indicated by histopathologic manifestations and the expression levels of fibrotic markers. Further data demonstrated that the ability of fibroblasts to differentiate into myofibroblasts was attenuated in scutellarein-treated mice model. In addition, we obtained in vitro evidence that scutellarein inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-β/Smad signaling, inhibited cellular proliferation by repressing PI3K/Akt signaling, and increased apoptosis of fibroblasts by affecting Bax/Bcl2 signaling.
