Upregulation of miR-664a-3p Ameliorates Calcific Aortic Valve Disease by Inhibiting the BMP2 Signaling Pathway

miR-664a-3p 上调通过抑制 BMP2 信号通路改善钙化性主动脉瓣疾病

阅读:6
作者:Yun Jiang, Wei Ji, Jiaqi Zhu, Zihao Shen, Jianle Chen

Abstract

The development of calcific aortic valve disease (CAVD) is a complex process of ectopic calcification involving various factors that lead to aortic valve stenosis, hemodynamic changes, and, in severe cases, even sudden death. Currently, aortic valve replacement is the only effective method. The osteogenic differentiation of aortic valve interstitial cells (AVICs) is one of the key factors of valve calcification. Emerging evidence suggests that bone morphogenetic protein 2 (BMP2) can induce the proosteogenic activation of AVICs. However, the regulatory mechanism underlying this activation in AVICs is unclear. In the present study, we elucidated through high-throughput RNA sequencing and RT-qPCR that miR-664a-3p was evidently downregulated in the calcific aortic valve. We also proved that miR-664a-3p was involved in regulating osteogenic differentiation in AVICs. Target prediction analysis and dual-luciferase reporter gene assay confirmed that miR-664a-3p is preferentially bound to BMP2. Furthermore, the effect of the miR-664a-3p/BMP2 axis on osteogenic differentiation in AVICs was examined using the gain- and loss-of-function approach. Finally, we constructed a mouse CAVD model and verified the effect of the miR-664a-3p/BMP2 axis on the aortic valve calcification leaflets in vivo. In conclusion, miR-664a-3p regulates osteogenic differentiation in AVICs through negative regulation of BMP2, highlighting that miR-664a-3p may be a potential therapeutic target for CAVD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。