Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation

发光二极管产生的蓝光调节纤维化特征:成纤维细胞增殖、迁移速度和活性氧生成

阅读:9
作者:Andrew Mamalis, Manveer Garcha, Jared Jagdeo

Conclusion

At the fluences studied, LED-BL can inhibit adult human skin dermal fibroblast proliferation and migration speed, and is associated with increased reactive oxygen species generation in a dose-dependent manner without altering viability. LED-BL has the potential to contribute to the treatment of keloids and other fibrotic skin diseases and is worthy of further translational and clinical investigation.

Objective

Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation.

Results

Human skin fibroblasts treated with LED-BL fluences of 5, 10, 15, 30, and 80 J/cm(2) demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45, and 80 J/cm(2) decreased fibroblast migration speed to 95 ± 7.0% (P = 0.64), 81.3 ± 5.5% (P = 0.021), 48.5 ± 2.7% (P < 0.0001), and 32.3 ± 1.9% (P < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm(2) resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。