The Enhancement of Acylcarnitine Metabolism by 5-Heptadecylresorcinol in Brown Adipose Tissue Contributes to Improving Glucose and Lipid Levels in Aging Male Mice

5-十七烷基间苯二酚增强棕色脂肪组织中的酰基肉碱代谢有助于改善老年雄性小鼠的血糖和脂质水平

阅读:5
作者:Kuiliang Zhang, Lei Jiang, Lamei Xue, Yu Wang, Yujie Sun, Mingcong Fan, Haifeng Qian, Li Wang, Yan Li

Abstract

5-Heptadecylresorcinol (AR-C17), a primary biomarker of whole grain (WG) consumption, has been demonstrated to improve the thermogenic activity of aging mice. However, the intricate regulatory mechanism is not fully understood. This study conducted metabolomics analysis on young and aging mice with or without AR-C17 administration after cold exposure. The results showed that the aging mice displayed lower levels of acylcarnitine (ACar) in their plasma compared with the young mice during cold exposure, and 150 mg/kg/day of AR-C17 administration for 8 weeks could increase the plasma ACar levels of aging mice. ACar has been reported to be an essential metabolic fuel for the thermogenesis of brown adipose tissue (BAT). AR-C17 had similar effects on the ACar levels in the BAT as on the plasma of the aging mice during cold exposure. Furthermore, the aging mice had reduced ACar metabolism in the BAT, and AR-C17 could improve the ACar metabolism in the BAT of aging mice, thereby promoting the metabolic utilization of ACar by BAT. Moreover, the glucose and lipid levels of aging mice could be improved by AR-C17. This study revealed a deeper metabolic mechanism involved in the AR-C17-mediated thermogenic regulation of BAT, providing a new theoretical basis for the nutrition and health benefits of WG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。