Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+ /Ca2+ exchange

电压门控钠通道 Nav 1.5 通过逆向 Na+ /Ca2+ 交换促进体外胶质细胞损伤模型中的星形胶质增生

阅读:6
作者:Laura W Pappalardo, Omar A Samad, Joel A Black, Stephen G Waxman

Abstract

Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na(+) /Ca(2+) exchanger (NCX), and by knockdown of Nav 1.5 mRNA. We also show that astrocytes display a robust [Ca(2+) ]i transient after mechanical injury and demonstrate that this [Ca(2+) ]i response is also attenuated by TTX, KB-R7943, and Nav 1.5 mRNA knockdown. Our results suggest that Nav 1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca(2+) ]i .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。