Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation

Silver-Russell 综合征患儿克隆衍生的皮肤成纤维细胞中细胞增殖相关基因表达降低与 11p15 ICR1 低甲基化程度无关

阅读:5
作者:Doreen Heckmann, Christina Urban, Karin Weber, Kai Kannenberg, Gerhard Binder

Background

The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were analyzed. Cell proliferation, IGF-II secretion, and IGF2 and H19 expression were measured, and a microarray expression analysis was performed.

Conclusions

The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression.

Results

Single-cell expansion established severely ICR1 hypomethylated clones (SRShypo) and normomethylated clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the quantitative real-time PCR (qRT-PCR) assay, whereas H19 expression was detectable, without differences between fibroblast clones. Cell count-related IGF-II release was comparable in SRShypo and Cnormo supernatants. Cell proliferation was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis. Conclusions: The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。