Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor

使用基于金纳米粒子的生物传感器进行 SARS-CoV-2 刺突抗原的比色和电化学检测

阅读:7
作者:Erman Karakuş, Eda Erdemir, Nisa Demirbilek, Lokman Liv

Abstract

Since emerging in China in December 2019, COVID-19 has spread globally, wreaked havoc for public health and economies worldwide and, given the high infectivity and unexpectedly rapid spread of the virus responsible-that is, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-urged the World Health Organization to declare it a pandemic. In response, reducing the virus's adverse effects requires developing methods of early diagnosis that are reliable, are inexpensive and offer rapid response. As demonstrated in this article, the colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with gold nanoparticle-based biosensors may be one such method. In the presence of the SARS-CoV-2 spike antigen, gold nanoparticles aggregated rapidly and irreversibly due to antibody-antigen interaction and consequently changed in colour from red to purple, as easily observable with the naked eye or UV-Vis spectrometry by way of spectral redshifting with a detection limit of 48 ng/mL. Moreover, electrochemical detection was achieved by dropping developed probe solution onto the commercially available and disposable screen-printed gold electrode without requiring any electrode preparation and modification. The method identified 1 pg/mL of the SARS-CoV-2 spike antigen and showed a linear response to the SARS-CoV-2 spike antigen ranging from 1 pg/mL to 10 ng/mL. Both methods were highly specific to detecting the SARS-CoV-2 spike antigen but not other antigens, including influenza A (i.e. H1N1), MERS-CoV and Streptococcus pneumoniae, even at high concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。