Vascular repair and anti-inflammatory effects of soluble epoxide hydrolase inhibitor

可溶性环氧化物水解酶抑制剂的血管修复和抗炎作用

阅读:5
作者:Na Dai, Cuifen Zhao, Qingyu Kong, Dong Li, Zhifeng Cai, Minmin Wang

Abstract

Kawasaki disease (KD) is the leading cause of acquired heart disease in pediatric patients in developed countries. Coronary artery aneurysms and myocardial infarction may occur if the disease remains untreated. An estimated 10-20% of KD patients do not respond to intravenous gamma globulin (IVIG), and thus, alternative treatments are currently being investigated. Epoxyeicosatrienoic acids (EETs) are natural anti-inflammatory factors and angiogenic mediators degraded by soluble epoxide hydrolase (sEH). sEH inhibitory factors have been demonstrated to stabilize EET levels, inhibit inflammation and promote vascular repair in vivo. The present study aimed to determine whether an increase in EET levels induced by treatment with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) promotes vascular repair in human coronary arterial endothelial cells (HCAECs) and reduces inflammation in a mouse model of KD induced by Lactobacillus casei cell wall extract. The effect of AUDA on vascular repair in HCAECs was assessed by using cell proliferation, migration, adhesion and tube formation assays, and the anti-inflammatory effect of AUDA in the mouse model of KD was determined by detecting the expression of matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α and interleukin (IL)-1β at the protein level via ELISA. The results demonstrated that AUDA increased the proliferation, migration, adhesion and tube formation ability of HCAECs in a dose-dependent manner. Furthermore, in the mouse model of KD, AUDA reduced the protein expression of MMP-9, IL-1β and TNF-α, indicating that AUDA may alleviate inflammatory reactions in the coronary arteries of KD model mice. The present results also indicate that these effects may be exerted through the peroxisome proliferator activated receptor γ signaling pathway. Taken together, the present study supports the potential utility of AUDA in the treatment of KD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。