Synaptic localization of α5 GABA (A) receptors via gephyrin interaction regulates dendritic outgrowth and spine maturation

α5 GABA (A) 受体通过 gephyrin 相互作用在突触处的定位调节树突的生长和树突棘的成熟

阅读:2
作者:Megan L Brady, Tija C Jacob

Abstract

GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370-385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAA R throughout circuit formation that regulates neuronal development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。