Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: implications in the pathogenesis of gelatinous drop-like corneal dystrophy

肿瘤相关钙信号转导子 2 是紧密连接蛋白 1 和 7 正确亚细胞定位所必需的:与胶状滴状角膜营养不良的发病机制有关

阅读:9
作者:Mina Nakatsukasa, Satoshi Kawasaki, Kenta Yamasaki, Hideki Fukuoka, Akira Matsuda, Motokazu Tsujikawa, Hidetoshi Tanioka, Maho Nagata-Takaoka, Junji Hamuro, Shigeru Kinoshita

Abstract

Gelatinous drop-like dystrophy (GDLD) is a rare autosomal recessive form of corneal dystrophy characterized by subepithelial amyloid depositions on the cornea. Previous clinical and laboratory observations have strongly suggested that epithelial barrier function is significantly decreased in GDLD. Despite the decade-old identification of the tumor-associated calcium signal transducer 2 (TACSTD2) gene as a causative gene for GDLD, the mechanism by which the loss of function of this causative gene leads to the pathological consequence of this disease remains unknown. In this study, we investigated the functional relationship between the TACSTD2 gene and epithelial barrier function. Through the use of immunoprecipitation and a proximity ligation assay, we obtained evidence that the TACSTD2 protein directly binds to claudin 1 and 7 proteins. In addition, the loss of function of the TACSTD2 gene leads to decreased expression and change in the subcellular localization of tight junction-related proteins, including claudin 1, 4, 7, and ZO1 and occludin, both in diseased cornea and cultured corneal epithelial cells. These results indicate that loss of function of the TACSTD2 gene impairs epithelial barrier function through decreased expression and altered subcellular localization of tight junction-related proteins in GDLD corneas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。