Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs

通过光学共振梳原位监测解开锂硫电池中电解质的化学动力学

阅读:5
作者:Fu Liu, Wenqing Lu, Jiaqiang Huang, Vanessa Pimenta, Steven Boles, Rezan Demir-Cakan, Jean-Marie Tarascon

Abstract

Challenges in enabling next-generation rechargeable batteries with lower cost, higher energy density, and longer cycling life stem not only from combining appropriate materials, but from optimally using cell components. One-size-fits-all approaches to operational cycling and monitoring are limited in improving sustainability if they cannot utilize and capture essential chemical dynamics and states of electrodes and electrolytes. Herein we describe and show how the use of tilted fiber Bragg grating (TFBG) sensors to track, via the monitoring of both temperature and refractive index metrics, electrolyte-electrode coupled changes that fundamentally control lithium sulfur batteries. Through quantitative sensing of the sulfur concentration in the electrolyte, we demonstrate that the nucleation pathway and crystallization of Li2S and sulfur govern the cycling performance. With this technique, a critical milestone is achieved, not only towards developing chemistry-wise cells (in terms of smart battery sensing leading to improved safety and health diagnostics), but further towards demonstrating that the coupling of sensing and cycling can revitalize known cell chemistries and break open new directions for their development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。