A novel differential diagnostic model for multiple primary lung cancer: Differentially-expressed gene analysis of multiple primary lung cancer and intrapulmonary metastasis

多原发性肺癌鉴别诊断新模型:多原发性肺癌及肺内转移的差异表达基因分析

阅读:7
作者:Dali Chen, Longyong Mei, Yubin Zhou, Cheng Shen, Huan Xu, Zhongxi Niu, Guowei Che

Abstract

The incidence of synchronous multiple primary lung cancer (MPLC) is increasing. However, present diagnostic methods are unable to satisfy the individualized treatment requirements of patients with MPLC. The present study aimed to establish a quantitative mathematical model and analyze its diagnostic value for distinguishing between MPLC and cases of the histologically similar disease, intrapulmonary metastasis (IPM). The sum value of the differential expression ratios of four proteins, namely p53, p16, p27 and c-erbB2, was evaluated by immunohistochemically-staining specimens of primary cancers, second separate cancers, metastatic lymph nodes and metastatic cancers. The sum value of the differential expression ratio of the four proteins from the primary tumor and the lymph-node metastasis or metastatic cancer was <90 in the 11 patients with a single metastatic cancer and in the 30 patients with lymph-node metastasis, but was >90 in the 14 patients with different histological types of MPLC. Therefore, a quantitative differentially-expressed gene mathematical model was established as follows: Sum of the differential expression ratios = p16T1 - T + p27T1 - T2 + C-erbB2T1 - T2 + p53T1 - T2, where T1 is the primary cancer and T2 is the lymph node metastasis, metastatic cancer or the second separate cancer. The quantitative differentially-expressed gene mathematical model is considered to be a useful tool for distinguishing between MPLC and IPM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。