Diminishment the gas permeability of polyethylene by "densification" of the amorphous regions

通过非晶态区域的“致密化”降低聚乙烯的气体渗透性

阅读:7
作者:Marta Safandowska, Cezary Makarewicz, Artur Rozanski, Rafal Idczak

Abstract

High-density polyethylene/paraffin wax (HDPE/wax) systems with adjustable density of the amorphous regions were prepared by a melt-blending process to optimize/control the final oxygen barrier properties. The introduction of paraffin wax (a low molecular weight modifier) is the key to tune the gas permeability properties of polyethylene-based materials. Density gradient column (DGC) measurements distinctly showed that the incorporation of modifier led to densification of the amorphous phase of semicrystalline HDPE consisting in a decrease in the average fractional free volume confirmed by positron annihilation lifetime spectroscopy (PALS). Polyethylene with "densified" amorphous phase exhibits lower oxygen permeability parameters compared to pristine polyethylene, but it is characterized by similar thermal and thermomechanical properties. An increase in the density of the amorphous regions of polyethylene by about 0.003 g/cm3, which corresponds to 0.3%, reduces the permeability of oxygen by up to 22%. For the first time, it has been proven that by controlling the density of the amorphous regions of semicrystalline polymers, it is possible to obtain materials with appropriate transport properties (without changing other properties) for applications meeting specific requirements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。