Glucocorticoid dysregulation of natural killer cell function through epigenetic modification

糖皮质激素通过表观遗传修饰导致自然杀伤细胞功能失调

阅读:7
作者:Karen Krukowski, Justin Eddy, Kelly Loster Kosik, Teresa Konley, Linda Witek Janusek, Herbert L Mathews

Abstract

It is well-established that psychological distress reduces natural killer cell activity (NKCA) and dysregulates cytokine balance. This may be mediated by stress-induced release of glucocorticoids, which have broad effects on the immune system, including the suppression of NKCA and alteration of cytokine production. The purpose of this study was to evaluate epigenetic mechanisms that may underlie the effect of glucocorticoids on NK cells, using the human NK cell line, NK92. Treatment of NK92 cells with the synthetic glucocorticoid, dexamethasone, at a concentration of 10⁻&sup7;M, produced a significant reduction in NKCA. Glucocorticoid inhibition was a consequence of not only a reduced capacity of the NK cells to bind to tumor targets but also a reduced production of granule constituents (perforin and granzyme B) with no detectable effect on granule exocytosis. Glucocorticoids also reduced the constitutive and the stimulated production of the cytokines, IL-6, TNF alpha and IFN gamma, and reduced the surface expression of LFA-1. Glucocorticoid treatment also reduced global histone acetylation, the acetylation of histone 4 lysine position 8, and the accessibility of the proximal promoters of perforin, interferon gamma and granzyme B. Histone acetylation was recovered by treatment of the NK cells with a histone deacetylase inhibitor, which also restored NKCA and IFN gamma production. These results demonstrate glucocorticoids to dysregulate NK cell function at least in part through an epigenetic mechanism, which reduces promoter accessibility through modification of histone acetylation status. This epigenetic modification decreases the expression of effector proteins necessary to the full functional activity of NK cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。