Evaluation of the Characteristics and Infectivity of the Secondary Inoculum Produced by Plasmopara viticola on Grapevine Leaves by Means of Flow Cytometry and Fluorescence-Activated Cell Sorting

用流式细胞术和荧光激活细胞分选法评估葡萄叶片上霜霉菌产生的二次接种物的特性和感染性

阅读:4
作者:Federico Massi #, Demetrio Marcianò #, Giuseppe Russo, Milda Stuknytė, Stefania Arioli, Diego Mora, Silvia L Toffolatti

Abstract

Plasmopara viticola, the oomycete causing grapevine downy mildew, is one of the most important pathogens in viticulture. P. viticola is a polycyclic pathogen, able to carry out numerous secondary cycles of infection during a single vegetative grapevine season, by producing asexual spores (zoospores) within sporangia. The extent of these infections is strongly influenced by both the quantity (density) and quality (infectivity) of the inoculum produced by the pathogen. To date, the protocols for evaluating all these characteristics are quite limited and time-consuming and do not allow all the information to be obtained in a single run. In this study, a protocol combining flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) was developed to investigate the composition, the infection efficiency and the dynamics of the inoculum produced by P. viticola for secondary infection cycles. In our analyses, we identified different structures within the inoculum, including degenerated and intact sporangia. The latter have been sorted, and single sporangia were directly inoculated on grapevine leaf discs, thus allowing a thorough investigation of the infection dynamics and efficiency. In detail, we determined that, in our conditions, 8% of sporangia were able to infect the leaves and that on a susceptible variety, the time required by the pathogen to reach 50% of total infection is about 10 days. The analytical approach developed in this study could open a new perspective to shed light on the biology and epidemiology of this important pathogen. IMPORTANCE P. viticola secondary infections contribute significantly to the epidemiology of this important plant pathogen. However, the infection dynamics of asexual spores produced by this organism are still poorly investigated. The main challenges in dissecting the grapevine-P. viticola interaction in vitro are attributable to the biotrophic adaptation of the pathogen. This work provides new insights into the infection efficiency and dynamics imputable to P. viticola sporangia, contributing useful information on grapevine downy mildew epidemiology. Moreover, future applications of the sorting protocol developed in this work could yield a significant and positive impact in the study of P. viticola, providing unmatched resolution, precision, and accuracy compared with the traditional techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。