Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses

质膜损伤的方法和溶酶体介导的修复反应的评估

阅读:5
作者:M Corrotte, T Castro-Gomes, A B Koushik, N W Andrews

Abstract

Rapid plasma membrane repair is essential to restore cellular homeostasis and improve cell survival after injury. Several mechanisms for plasma membrane repair have been proposed, including formation of an intracellular vesicle patch, reduction of plasma membrane tension, lesion removal by endocytosis, and/or shedding of the wounded membrane. Under all conditions studied to date, plasma membrane repair is strictly dependent on the entry of calcium into cells, from the extracellular medium. Calcium-dependent exocytosis of lysosomes is an important early step in the plasma membrane repair process, and defects in plasma membrane repair have been observed in cells carrying mutations responsible for serious lysosomal diseases, such as Chediak-Higashi (Huynh, Roth, Ward, Kaplan, & Andrews, 2004) and Niemann-Pick Disease type A (Tam et al., 2010). A functional role for release of the lysosomal enzyme acid sphingomyelinase, which generates ceramide on the cell surface and triggers endocytosis, has been described (Corrotte et al., 2013; Tam et al., 2010). Therefore, procedures for measuring the extent of lysosomal fusion with the plasma membrane of wounded cells are important indicators of the cellular repair response. The importance of carefully selecting the methodology for experimental plasma membrane injury, in order not to adversely impact the membrane repair machinery, is becoming increasingly apparent. Here, we describe physiologically relevant methods to induce different types of cellular wounds, and sensitive assays to measure the ability of cells to secrete lysosomes and reseal their plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。