Sufu- and Spop-mediated regulation of Gli2 is essential for the control of mammalian cochlear hair cell differentiation

Sufu 和 Spop 介导的 Gli2 调节对于控制哺乳动物耳蜗毛细胞分化至关重要

阅读:8
作者:Tianli Qin, Chin Chung Ho, Boshi Wang, Chi-Chung Hui, Mai Har Sham

Abstract

Development of mammalian auditory epithelium, the organ of Corti, requires precise control of both cell cycle withdrawal and differentiation. Sensory progenitors (prosensory cells) in the cochlear apex exit the cell cycle first but differentiate last. Sonic hedgehog (Shh) signaling is required for the spatiotemporal regulation of prosensory cell differentiation, but the underlying mechanisms remain unclear. Here, we show that suppressor of fused (Sufu), a negative regulator of Shh signaling, is essential for controlling the timing and progression of hair cell (HC) differentiation. Removal of Sufu leads to abnormal Atoh1 expression and a severe delay of HC differentiation due to elevated Gli2 mRNA expression. Later in development, HC differentiation defects are restored in the Sufu mutant by the action of speckle-type PDZ protein (Spop), which promotes Gli2 protein degradation. Deletion of both Sufu and Spop results in robust Gli2 activation, exacerbating HC differentiation defects. We further demonstrate that Gli2 inhibits HC differentiation through maintaining the progenitor state of Sox2+ prosensory cells. Along the basal-apical axis of the developing cochlea, the Sox2 expression level is higher in the progenitor cells than in differentiating cells and is down-regulated from base to apex as differentiation proceeds. The dynamic spatiotemporal change of Sox2 expression levels is controlled by Shh signaling through Gli2. Together, our results reveal key functions of Gli2 in sustaining the progenitor state, thereby preventing HC differentiation and in turn governing the basal-apical progression of HC differentiation in the cochlea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。